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Abstract

Urban traffic safety is a pressing concern in modern transportation systems,
especially in rapidly growing metropolitan areas where increased traffic con-
gestion, complex road networks, and diverse driving behaviors exacerbate
the risk of traffic incidents. Traditional traffic crash data analysis offers
valuable insights but often overlooks a broader range of road safety risks.
Near-crash events, which occur more frequently and signal potential colli-
sions, provide a more comprehensive perspective on traffic safety. However,
city-scale analysis of near-crash events remains limited due to the significant
challenges in large-scale real-world data collection, processing, and analysis.
This study utilizes one month of connected vehicle data, comprising billions
of records, to detect and analyze near-crash events across the road network in
the City of San Antonio, Texas. We propose an efficient framework integrat-
ing spatial-temporal buffering and heading algorithms to accurately identify
and map near-crash events. A binary logistic regression model is employed
to assess the influence of road geometry, traffic volume, and vehicle types on
near-crash risks. Additionally, we examine spatial and temporal patterns,
including variations by time of day, day of the week, and road category. The
findings of this study show that the vehicles on more than half of road seg-
ments will be involved in at least one near-crash event. In addition, more
than 50% near-crash events involved vehicles traveling at speeds over 57.98
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mph, and many occurred at short distances between vehicles. The analy-
sis also found that wider roadbeds and multiple lanes reduced near-crash
risks, while single-unit trucks slightly increased the likelihood of near-crash
events. Finally, the spatial-temporal analysis revealed that near-crash risks
were most prominent during weekday peak hours, especially in downtown ar-
eas. The findings provide valuable insights for targeted safety interventions
and contribute to more effective road safety strategies aimed at reducing
serious traffic incidents in urban environments.

Keywords: Urban traffic safety, Near-crash event, Connected vehicle data,
Spatial-temporal analysis, Road safety interventions

1. Introduction

Traffic safety and human mobility remain a pressing concern worldwide,
particularly in rapidly expanding metropolitan areas where increasing traffic
congestion, complex road networks, extreme weather, and diverse road user
behaviors converge to heighten the risk of traffic incidents (Evans, 1991, 2004;
Ewing and Dumbaugh, 2009; Li et al., 2024; Shinar, 2017; Ye et al., 2024).
Traffic accidents are a pervasive and significant issue in daily urban life, re-
sulting not only in substantial economic losses and infrastructure damage
but also in severe injuries and fatalities (Gopalakrishnan, 2012; Zhu et al.,
2024). In 2023, over 1 million lives were lost globally due to traffic accidents,
with countless more affected by non-fatal injuries, underscoring the urgency
of addressing road safety as a critical public health challenge in urban en-
vironments (World Health Organization, 2023). The frequency and severity
of these incidents make it imperative to develop more effective strategies to
mitigate risks and enhance the safety of urban roadways. Traditional traffic
safety research has primarily focused on analyzing crash data to understand
and mitigate these risks (Lord and Mannering, 2010; Park and Lord, 2009).
However, crashes, while critical indicators of road safety issues represent only
the tip of the iceberg. They occur relatively infrequently, making it difficult
to capture the full spectrum of daily risky driving behaviors.

Near-crash events, characterized by close incidents that could have re-
sulted in a collision, are far more common than actual accidents in our daily
lives (Perkins, 1968; Steele et al., 1999; Talebpour et al., 2014). They pro-
vide a crucial window into the precursors of serious accidents, but they are
often overlooked in traffic safety studies due to the challenges in detecting
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and analyzing such events. Leveraging near-crash events facilitates under-
standing valuable insights into the driving conditions, road characteristics,
and behaviors that increase the likelihood of a crash (Klauer et al., 2006;
Wang et al., 2015; Bakhit et al., 2018). By studying near-crash events, re-
searchers can identify spatial-temporal patterns and risk factors that are not
evident in crash data alone, enabling the development of more proactive and
preventative traffic safety measures.

Recent advancements in connected vehicle technology offer unprecedented
opportunities to collect high-frequency, precise positioning data on vehicle
movements and interactions. The real-time connected vehicle data enables
the detection and analysis of near-crash events in the real world, provid-
ing a more comprehensive view of road safety risks (Papadoulis et al., 2019;
Islam and Abdel-Aty, 2023; Islam et al., 2023). Many scholars contribute
their great efforts to analyze driving behaviors and traffic safety using con-
nected vehicle data. Many improvements in traffic safety analysis have been
achieved (Zhang and Abdel-Aty, 2022; Zheng et al., 2021; Nazir et al., 2023;
Ali et al., 2023). However, there remains a gap in the literature regarding
the application of connected vehicle data to uncover spatial-temporal pat-
terns of near-crash events, particularly in large-scale urban environments.
Few studies systematically investigated the characteristics of the spatial and
temporal distribution of near-crash events across different roadway types at
the large-scale city level. Understanding these patterns is crucial for devel-
oping targeted interventions that can mitigate risks and enhance urban road
safety, ultimately reducing the probability of serious accidents.

To fill this gap in urban traffic safety, this study leverages Wejo con-
nected vehicle data (encompassing billions of vehicle records) to detect and
map near-crash events, providing a granular view of where and when these
incidents occur across the City of San Antonio, Texas. Firstly, we propose
a near-crash event detection framework with spatial-temporal buffering and
the heading algorithm to accurately identify and spatially map near-crash
events across the city’s diverse road network. Based on the detected events,
we adopt a binary logic regression model to investigate the road and traffic
characteristics, such as road geometry and traffic volume, contributing to
higher near-crash risks. Then, we further explore the spatial and tempo-
ral distributions of near-crash events, identifying patterns that vary by time
of day, day of the week, and specific road types. By examining the distri-
bution on both workdays and holidays (including the weekends and public
holidays), the study aims to reveal how hourly and daily traffic patterns
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influence the probability of near-crash incidents. Through the analysis of
near-crash events, this paper aims to answer the following three research
questions:

1. How can connected vehicle data be utilized to detect and map near-
crash events across a diverse urban roadway network with low compu-
tational costs?

2. Which road facilities and traffic characteristics contribute most signif-
icantly to the likelihood of near-crash events?

3. What are the spatial and temporal patterns of near-crash events in San
Antonio, and how do these patterns vary across different times of day,
days of the week, and road categories?

This study’s contributions are grounded in addressing the research ques-
tions and achieving the set objectives, thereby advancing the field of traffic
safety analysis. First, this study introduces an efficient data-driven approach
for detecting near-crash events using a massive amount of connected vehicle
data in a metropolitan area. A large-scale analysis enables transportation au-
thorities and urban planners to identify specific locations that require safety
interventions, thus contributing to the prevention of future crashes. Second,
this study offers insights into the road facilities and traffic characteristics
that increase or mitigate near-crash risks. The systematic analysis in this
research identifies critical factors such as road geometry, Annual Average
Daily Traffic volume (AADT), and vehicle types in AADT that significantly
influence the likelihood of near-crash events. By understanding these key
contributing factors, policymakers can develop more effective strategies to
reduce the occurrence of near-crash events and improve overall traffic safety.
The last one is to provide a systematic spatial-temporal analysis of near-crash
events, which provides a deeper understanding of the dynamic nature of road
safety risks. By mapping these spatial-temporal variations, the study high-
lights the importance of considering temporal factors when designing and
implementing safety measures

The rest of this paper is organized as follows. Section 2 reviews and sum-
marizes the relevant studies on road traffic safety, near-crash analysis using
connected vehicle data, and related analysis approaches. The overall descrip-
tions of data and study area are provided in Section 3. The framework of
near-crash event detection and the models used for regression and spatial-
temporal analysis are introduced in Section 4. In Section 5, the analysis
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results are illustrated. Finally, we conclude this study and give a compre-
hensive discussion in Section 6.

2. Literature Review

Road traffic safety is a critical and widely studied topic in modern trans-
portation systems, as it plays a fundamental role in shaping public health
outcomes, economic resilience, and the overall quality of life in both urban
and rural contexts. Specifically, road traffic crashes have emerged as one of
the most serious threats to the safety of road users, including pedestrians,
cyclists, motorists, and vehicle passengers. Thus, numerous scholars have
contributed their efforts to investigate the factors that lead to road traffic
crashes from the perspectives of road geometric design, driving performance,
and traffic interventions (Deery and Fildes, 1999; Arvin et al., 2019; Suriya-
wongpaisal and Kanchanasut, 2003; Miaou and Lum, 1993). Their works
provided more comprehensive and valuable insights into reducing the risks of
road traffic crashes in real-world scenarios. For example, the authors find that
regions with infrequency geometric inconsistency could demonstrate higher
crash risks, while the areas with similar geometric inconsistency represent
lower crash ratios (Shilpa and Bhavathrathan, 2024). Also, improvements in
roadway width, pedestrian facilities, and access management can efficiently
enhance traffic safety (Organization, 2023; Ben-Bassat and Shinar, 2011).
However, the majority of these studies rely on historical crash records, which
only capture a limited portion of the actual risk landscape. This reliance can
constrain the ability to proactively identify and address potential hazards.
Furthermore, crash records often suffer from biases, inaccuracies, or missing
information regarding location, time, and other relevant attributes, which
can lead to misleading findings and conclusions (Xie et al., 2019; Ali et al.,
2023; Islam and Abdel-Aty, 2023).

The concept of near-crash events as a surrogate measure for traffic safety
was first introduced by (Perkins, 1968) and has since evolved with advance-
ments in data collection technologies. At the early stage, the near-crash
events are identified based on traditional observational approaches or ba-
sic Traffic Conflict Techniques (Parker Jr and Zegeer, 1989), which rely on
manual observation and interpretation of driver behaviors and vehicle inter-
actions(Hydén, 1987; Steele et al., 1999). With mobile and low-cost sensors
emerging, naturalistic driving data are used to detect and analyze near-crash
events. The naturalistic driving data is collected from a series of sensors,
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which documents the driving states (e.g., vehicle speed, acceleration, and
braking), driver’s control, lane position, and frequency of behaviors in nor-
mal driving. Based on the naturalistic driving data, studies find that the
velocity when braking, lane-changing behavior on highways, and yaw rate
of vehicles highly contribute to near-crash events (Kong et al., 2021; Perez
et al., 2017; Wang et al., 2015). Moreover, distraction or inattention when
driving can lead to high crash or near-crash risks, such as drowsy driving, tex-
ting with a mobile phone, and slow eye movement during night driving (Lee
et al., 2016; Klauer et al., 2006; Crummy et al., 2008; Nasr Esfahani et al.,
2021). Although naturalistic driving data can provide wider implications for
investigating the factors contributing to crashes and near-crashes, a major
challenge lies in the limited sample size and potential bias inherent in this
type of data. These limitations may not fully capture the diverse range of
driving behaviors and conditions that contribute to near-crash events, neces-
sitating careful consideration in the analysis and interpretation of the results.
Moreover, because the volunteers in naturalistic driving data collection are
aware that their performance is being monitored, this awareness can lead
to altered driving behavior, often referred to as the Hawthorne effect(Adair,
1984; Golob and Gould, 1998; Reagan et al., 2013). This effect can result in
more cautious or atypical driving patterns, which may not accurately reflect
their usual behavior, thereby introducing bias and limiting the validity of the
data collected in naturalistic driving studies.

The emergence of connected vehicle technology has revolutionized near-
crash analysis by enabling the collection of high-frequency, high-precise lo-
cation data on vehicle movements and interactions. This data provides real-
time insights into the driving environment, allowing for the detection and
analysis of near-crash events as they happen. Studies have demonstrated
that connected vehicle data have been used to detect near-crash events and
develop near-crash prediction models that identify high-risk situations before
the vehicles are involved in the crashes on highways or specific small areas
(Islam et al., 2023; Islam and Abdel-Aty, 2023; Xie et al., 2019; Zheng et al.,
2021). Moreover, due to the large volume of real-time connected vehicle data
that becomes more available, this data provides alternatives for identifying
crashes and near-crashes in the upcoming era of connected and autonomous
vehicles (Papadoulis et al., 2019; Virdi et al., 2019; Mannering et al., 2020).
This capability will enable more proactive and precise road safety interven-
tions, potentially reducing the occurrence of traffic incidents and enhancing
overall traffic safety. Besides, connected vehicle data is more widely used in
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urban traffic flow, speed estimation, and microscope traffic simulation appli-
cations (Kamal et al., 2018; Sun et al., 2016; Guériau et al., 2016; Lu et al.,
2020).

However, few studies concentrate on analyzing spatial-temporal patterns
of near-crash events in large-scale or city-level scenarios. Understanding these
patterns is crucial for identifying high-risk areas and times, which can inform
the development of targeted safety interventions. Most existing research has
been limited to smaller-scale studies or specific road segments, leaving a sig-
nificant gap in our knowledge of how near-crash events are distributed across
entire urban road networks. Analyzing these patterns at a city level allows for
a more comprehensive understanding of the underlying factors contributing
to near-crash events, such as traffic density, road design, and varying driver
behaviors during different time periods of the day or week. This broader
perspective is essential for developing effective strategies to mitigate risks
and enhance road safety in increasingly complex urban environments.

3. Dataset and Study Area

This study uses the Wejo connected vehicle dataset to detect near-crash
events. The Wejo dataset is collected from mainstream vehicle manufacturers
in the United States. It primarily documents non-commercial fleet movement
data, which can better reflect the driving situation and urban traffic states
on the roadway. The telematics devices installed on the vehicles send in-
stantaneous information to the Wejo Cloud Platform in near-real time. This
dataset documents the vehicle’s states from the engine on to off, including
GPS location as latitude (φ) and longitude (λ), speed, heading, journey ID,
data point ID, and timestamp of data documented. Table 1 shows example
records of Wejo Dataset. The Wejo dataset provides meter-level positioning
accuracy (6 decimal places) and high-frequency sampling interval (every 3
seconds), facilitating near-crash event detection on the roadway. The one-
month Wejo data from 11/01/2021 to 11/30/2021 are used in this study.
The raw dataset documents over 2.9 billion GPS data points from 7.9 mil-
lion unique trajectories this month. We adopt preprocessing methods to
remove the outliers caused by GPS signal drifts in the raw data to keep
each trajectory smooth and reasonably distributed on the roadway. For the
data preprocessing and following analysis, we adopt parallel and distributed
computation approaches to handle such a huge volume of data.
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Table 1: Example Records of Wejo Connected Vehicle Data in 11/01/2021
Data Point ID Journey ID Timestamp (t) Lat(φ) Lon(λ) Speed Heading (ϑ) Ignition Status

105623589 94a69188fc92e9bde 08:10:18 29.****** -98.****** 0 238 KEY ON
236598742 4f9cba35e35ac567d 15:21:39 29.****** -98.****** 25 254 MID JOURNEY

...
...

...
...

...

453219856 94a69188fc92e9bde 08:15:59 29.****** -98.****** 45 32 MID JOURNEY
105623511 785e1b0b6c68d3069 07:10:21 29.****** -98.****** 50 185 MID JOURNEY
598746523 4f9cba35e35ac567d 15:25:29 29.****** -98.****** 60 25 MID JOURNEY
263598421 785e1b0b6c68d3069 07:15:35 29.****** -98.****** 0 228 KEY OFF

As shown in Fig.1, the study area covers the majority of the city of San
Antonio, Texas, across 70 zip code areas (close to 1660.95 square miles).
Over 1.45 million people are living in this city. Based on the travel survey in
San Antonio, over 60% surveyed households use private vehicles as the travel
model in their daily life. Understanding the ratio of near-crash events on road
segments can significantly improve traffic safety for the traffic department.
This study uses the annual data from the road inventory provided by the
Texas Department of Transportation (TxDOT)1. The road inventory dataset
has ten road categories, including three types of local roads and seven types
of highways maintained by the TxDOT. The detected near-crash events will
fall under 13,231 road segments in the TxDOT road inventory data. The
detailed attributes of each road segment are provided in Appendix A. The
following analysis will adopt these attributes in binary logistic regression
to reveal the road facilities that could increase or lower the probability of
near-crash events.

4. Methodology

In this section, we develop an algorithm framework that leverages the
connected vehicles’ trajectories to detect near-crash events, as illustrated in
Fig.2. The near-crash detection algorithm leverages the heading angles and
current locations of two vehicles to estimate their potential conflict location.
We can further calculate the time of two vehicles reaching the conflict lo-
cation based on their current speeds. When the difference between the two
vehicles’ reaching time is less than the Time-To-Collision (TTC) threshold
(3 seconds), we assume these two vehicles are involved in a near-crash event
(Islam et al., 2023; Islam and Abdel-Aty, 2023; Li et al., 2017a; Xing et al.,

1TxDOT Data Portal: https://www.txdot.gov/data-maps/roadway-inventory.

html.
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Figure 1: Study area in the City of San Antonio. (A) represents the road network data in
San Antonio, and (B) represents the spatial distribution of Wejo connected vehicle data
records on 11/01/2021.

2019). To decrease the computational costs of near-crash event detection, we
create a spatial-temporal buffer for data points of each trajectory to query
the data points of other vehicles that are close in space and time. After
near-crash event detection, we further match the events on the road seg-
ments. This facilitates investigating the correlation between traffic facilities
and near-trash events on the roadway and revealing the spatial-temporal
patterns of near-crash events in San Antonio. We adopt a binary logistic re-
gression model and the Getis-OrdGi∗ algorithm to examine the correlation
and uncover the spatial-temporal patterns, respectively (Sarkar et al., 2011;
Getis and Ord, 1992).

4.1. Near-Crash Event Detection

As shown in Fig.2, the near-crash event detection framework proposed in
this study has three main steps: spatial-temporal buffering, near-crash event
detection using the heading algorithm, and a map-matching approach. The
raw connected vehicle data is preprocessed and reorganized as the trajectory
data. We first create spatial-temporal buffers for each point in the trajectory
to identify the data points of other vehicles at a distance of less than 100
meters(distance threshold) and the difference of recorded timestamps less
than 10 seconds(time window). The parameters for spatial-temporal buffer
settings ensure the identification of vehicles that are in close proximity and
have the potential to interact within a short time frame, capturing realistic
near-crash scenarios. The data points in the spatial-temporal buffer will be
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further input to the near-crash event detection algorithm. When the Time-
To-Collision (TTC) of a potential near-crash is less than 3 seconds, it will be
considered a near-crash event (Islam et al., 2023; Islam and Abdel-Aty, 2023;
Li et al., 2017a; Xing et al., 2019). The detected near-crash events will be
further matched on the roadway using spatial querying. Finally, the number
of near-crash events on each road segment can be calculated.

Raw Connected 
Vehicle Data

Trajectory
Data

Road-based
Near-Crash Records

Data
Pre-processing

Spatial-Temporal 
Buffering

Near-Crash
Event Detection

Map
Matching

Potential
Near-Crash
LocationHeading θ13

Heading θ
23

φ1, λ1 φ3, λ3

φ2, λ2

α1

α2 α3

Segment1

Near-Crash Points (Lat, Lon, t) Map Matching Results (S*, t) Road Segment

Segment2 Segment3

Time

Time
Window

Distance Threshold

Spatial-
Temporal Buffer

Lon(λ) Lat(φ)

tn

tn+1

tn-1

(B)

(C)

(A)

Figure 2: Framework of Near-Crash Event Detection

The first step is to create spatial-temporal buffers for each data point
in every trajectory to decrease the computational time complexity of near-
crash detection (shown in Fig.2(A)). The data points in each trajectory will
find other spatially and temporally close vehicles’ data points through the
spatial-temporal buffering approach. We adopt the k-dimensional tree algo-
rithm (KDTree) to query the data points within a distance threshold (Manee-
wongvatana and Mount, 1999; He and Sun, 2012). The KDTree is a type of
binary tree where each node represents an axis-aligned rectangle in the space.
Each node is associated with a specific axis and divides the points into two
groups based on whether their coordinate along that axis is greater than or
less than a particular threshold value (Maneewongvatana and Mount, 1999).
Given a specific data point p(φ, λ, t, ϑ, v) as an anchor point, the KDTree
algorithm can efficiently query the data points near the anchor point for a
specific distance threshold (100 meters), where φ and λ denotes the latitude
and longitude of the vehicle at timestamp t, ϑ and v represent the head-
ing angle and speed of the vehicle when data point recorded, respectively.
Meanwhile, in the spatial buffer, a time window is employed to filter out the
data points that are more than 10 seconds before or after the timestamp
of the anchor point is documented. In other words, we select data points
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from other trajectories that are within 100 meters of the anchor point and
recorded within ten seconds before or after the anchor point’s timestamp
for the near-crash event detection. Moreover, the spatial-temporal algorithm
uses flags to record the pairs of data points detected in a spatial-temporal
buffer to avoid duplicate querying, which can further increase the efficiency
of near-crash event detection.

As shown in Fig.2(B), the second step of the near-crash detection al-
gorithm is to calculate the potential conflict locations in spatial-temporal
buffers and find the conflict pairs of near-crash events (Islam and Abdel-Aty,
2023). Given a pair of trajectory points from two vehicles p1(φ1, λ1, t1, ϑ1, v1)
and p2(φ2, λ2, t2, ϑ2, v2), we use an intersecting radials algorithm to estimate
the intersection location p3(φ3, λ3) of the two vehicles. Based on the inter-
secting radials algorithm provided in (Williams, 2008), we use the following
equations to calculate the intersection location φ3, λ3.

d13 = arctan(
sind12 ∗ sinα1 ∗ sinα2

cosα2 + cosα1 ∗ cosα3

) (1)

φ3 = arcsin(sinφ1 ∗ cosd13 + cosφ1 ∗ sind13 ∗ cosϑ13) (2)

∆λ = arctan(
sinϑ13 ∗ sind13 ∗ cosφ1

cosd13 − sinφ1 ∗ sinφ3

) (3)

λ3 = (λ1 −∆λ+ π)%(2 ∗ π)− π (4)

where φ3 and λ3 denote the latitude and longitude of the intersection location
of two trajectories, respectively. d13 represents the distance between p1 and
p3, which are calculated based on angle α1 (between the v12 and v13), angle
α2 (between the v21 and v23), angle α3 (between the v32 and v31), and
distance between p1 and p2. α1, α2, and α3 can be calculated based on
the heading angles of the two vehicles. The operator % is to calculate the
modulus after division. All the latitudes and longitudes used in the equations
are converted to radians for the calculation. Further details can be found in
(Williams, 2008).

After conflict location estimation, we adopt equations 5 and 6 to calculate
the Time to Conflict (TTC) of the two vehicles(Islam et al., 2023; Islam and
Abdel-Aty, 2023; Li et al., 2017b). Inspired by the existing studies focusing
on driving behavior and near-crash events analysis, they adopted 1-4 seconds
as the TTC threshold to identify the conflict. Thus, we use 3 seconds as the
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TTC threshold in this study. The pairs of data points whose TTC value is
smaller than 3 seconds are identified as near-crash events.

t13 =
d13
v1

, t23 =
d23
v2

(5)

TTC = min(t13, t23), if t13 − 1.5s ≤ t23 ≤ t13 + 1.5s (6)

where t13 and t23 denote the time duration of vehicle1 reaching estimated
conflict location, and the duration of vehicle2 to estimated conflict location,
respectively. d13 and d23 represent the distance between p1 and estimated
conflict location, and the distance between p2 and estimated conflict location,
respectively. v1 and v2 denote the speed of p1 and p2.

The final step of the near-crash event detection approach, shown in Fig.2(C),
is to match the detected near-crash events on the road segments, which can
summarize the risks of near-crash events on segments. We adopt the spa-
tial querying approach to join the near-crash events with the nearest road
segment. To reduce the impact of incorrect matches on the following analy-
sis, this study only considers near-crash events occurring on the same road
direction due to overtaking or failure to decelerate. Note that the vehi-
cle trajectory data does not provide elevation information, which can lead
to near-crash events detected on different levels of roads (e.g., flyovers or
bridges). After matching the events on the road segments, we can perform
further analysis, such as aggregating the frequency of near-crash events by
segment and assessing the spatial distribution of these events across the City
of San Antonio. This helps in identifying high-risk areas, allowing for tar-
geted interventions to improve road safety. The analysis can be enhanced
by incorporating additional attributes, such as traffic volume, road geome-
try, or environmental factors, to better understand the underlying causes of
near-crash events.

4.2. Binary Logistic Regression Model

To explore the correlation between the risk of near-crash events on road
segments and various road environmental factors as well as additional at-
tributes of transportation system, we employ the Binary Logistic Regression
(BLR) model (Sarkar et al., 2011; Sze et al., 2014; Bham et al., 2012). This
statistical model is particularly well-suited for our analysis as it allows us
to model a categorical dependent variable with more than two possible out-
comes corresponding to our study’s risk levels associated with near-crash

12



events. The BLR model predicts the probabilities of the different possible
outcomes of a categorical dependent variable given a set of independent vari-
ables.

In our study, the dependent variable represents the risk level of a near-
crash event occurring on a specific road segment, which can take two discrete
categories, including low-risk and high-risk segments. The road risk level
is determined by the ratio of the number of near-crash events detected to
the total number of vehicles passing through the same road segment, as
shown in Eq.7. The road segments whose near-crash events ratio is smaller
than 1% are identified as low-risk segments, and other segments with ratios
greater than 1% are considered relatively high-risk segments. The purpose
of categorization is to ensure that the sample sizes for different categories
are relatively balanced, thereby avoiding the bias that may arise from class
imbalance.

Risk Ratioi =
No. of Near-Crash Events on Segmenti

No. of V ehicles Passing through Segmenti
(7)

The BLR model predicts the probability P (Y = 1|X) that the dependent
variable Y is in the high-risk category (corresponding to the low-risk segment,
which is Y = 0) based on the independent variables X = [X1, X2, ..., Xn].
The logistic regression model is formulated as Eq.8. The maximum likelihood
estimation is adopted to estimate the bias and coefficients in the logistic re-
gression model. The likelihood function L(β) is the product of the proba-
bilities of observing dependent values Yi given the independent variables Xi.
The likelihood estimation is represented in Eq.9. After likelihood estimation,
we use log-likelihood and Pesudo R2 to evaluate the regression performance.

log(
P (Y = 1|X)

P (Y = 0|X)
) = β0 + β1X1 + β2X2 + · · ·+ βnXn (8)

L(β) =
n∏

i=1

P (Yi|Xi)
Yi(1− P (Yi|Xi)

1−Yi)) (9)

where β0 is the bias and βi are the coefficients corresponding to each inde-
pendent variable Xi. n is the number of observations, and P (Yi|Xi) is the
probability of the observed value for each observation.

4.3. Hot Spot Analysis

We adopt hot spot analysis in this study to uncover the spatial patterns
of near-crash events across the City of San Antonio, allowing for the iden-
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tification of locations with significantly higher or lower concentrations. By
employing spatial statistical approaches, the Getis-OrdGi∗ model (Manepalli
et al., 2011; Getis and Ord, 1992; Ord and Getis, 1995) can detect clusters
of road segments where near-crash events are more prevalent, known as hot
spots, as well as areas with fewer incidents, known as cold spots. The identi-
fication of these spatial patterns is crucial for understanding the geographic
distribution of road safety risks and for guiding targeted interventions aimed
at reducing the frequency and severity of near-crash events in high-risk areas.

The Getis-OrdGi∗ model is a typical spatial statistical model in Geo-
graphic Information Science (GIS), which adopts Gi∗ statistic for each road
segment i. The calculation of Gi∗ is shown in Eq.10, where xj denotes the
ratio of near-crash events at road segment j and n denotes the total number
of all road segments. wij represents the spatial weight between road seg-
ments i and j, which indicates the influence of j on i. X and S denote the
mean and standard deviation of the near-crash ratio across all road segments,
respectively.

G∗
i =

∑n
j=1wijxj −X

∑n
j=1wij

S

√∑n
j=1 w

2
ij−(

∑n
j=1 wij)2

n−1

(10)

We use a distance-based approach to identify the spatial weight between
road segments. In particular, we adopt wij = 1

dij
to identify the spatial

weight between location i and j, which implies that the spatial relationships
between the two locations decrease when their distance increases (Tobler,
1970). In this study, we adopt a fixed distance (1 mile) as the threshold to
calculate the spatial weight between two locations. After calculating G∗

i , the
high positive value of G∗

i indicates that the location i and its neighbors have
higher near-crash risk than expected by random choice. The low negative
value means the location and neighboring areas have lower near-crash risk
than expected.

5. Results

5.1. Overall distribution of near-crash events

The analysis of near-crash events across San Antonio provides critical
insights into the spatial distribution and contributing factors of road safety
risks. By applying the near-crash events detection approach, 3,377,786 near-
crash events are detected from the Wejo connected vehicle dataset across 42
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roads with 13,231 road segments in November 2021. Fig.3 shows the ratio
of near-crash events on road segments during this month and corresponding
near-crash attributes in San Antonio. Fig.3(A) demonstrates that near-crash
events are not evenly or randomly distributed but are concentrated in cer-
tain areas, indicating some urban areas with a high frequency of near-crash
incidents. The color gradient in this figure reflects the ratio of near-crash
events relative to the observed traffic volume, with darker red shades repre-
senting higher risk segments where the near-crash event ratio exceeds 10%.
In contrast, the blue lines indicate lower-risk segments with ratios below 1%.
Notably, there are 9,975 road segments with a ratio of less than 1%, 2,842
segments with ratios between 1% and 5%, and 76 segments where the near-
crash event ratio is greater than 10%. These 76 segments represent potential
high-risk areas for near-crash events in the City of San Antonio.

<1%
1% - 5%
5% - 10%
> 10%

Near-Crash Event Ratio

(B)(A)

Spatial Distribution of Near-Crash Events in San Antonio

(D)

(C)

(E)

Mean:54.10
Median:57.98
Std:141.74

Mean:19.67 
Median:17.53
Std:13.53

Mean:18
Median:255
Std:740.13

Mean: 32%
Median: 93%
Std:194%

Figure 3: Spatial Distribution of Near-Crash Risk Ratio and Attributes of Near-Crash
Events in the City of San Antonio

At the driving behavior level, Fig.3(B) and (C) provide the speed and
distance distribution of vehicles involved in near-crash events, which can fur-
ther offer insights into the vehicles’ states when the events occur. Fig.3(B)
reflects that the speed of vehicles is over 57.98 mph across over 50% near-
crash events, which indicates that higher speeds are often associated with
greater risk. Meanwhile, there is a considerable number of near-crash inci-
dents at low speeds, possibly in more congested or complex urban environ-
ments, which requires particular attention for urban transportation planning.
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Moreover, Fig.3(C) demonstrates the high frequency of near-crash events at
shorter distances between two vehicles (smaller than 20m), suggesting that
drivers may follow too closely, especially in traffic-dense areas. Thus, en-
hancing public awareness about safe following distances could help reduce
near-crash incidents.

At the road segment level, Fig.3(D) and (E) reflect the distribution of
near-crash events in San Antonio. As shown in Fig.3(D), although many road
segments experience a low number of near-crash events, there is a long tail
of segments with a significantly higher number of near-crash incidents. The
median number of near-crash events on segments is over 255, which indicates
that at least half of the road segments analyzed experience a high frequency
of near-crash incidents, suggesting that these safety risks are prevalent and
not limited to a few isolated locations. Moreover, as shown in Fig.3(E), more
than 50% road segments have a risk ratio greater than 93%, indicating that
almost every vehicle passing over the segment will involve one near-crash
event. This suggests the probability of being involved in a traffic accident
during daily driving is relatively high in the City of San Antonio. In the
following sections, we will further analyze the risk of near-crash events during
different time periods on workdays and holidays to reveal the variations in
near-crash risk across different urban areas.

Additionally, we adopt the binary logistic regression model to investigate
the factors that may affect the risks of near-crash events on road segments.
The regression model is conducted by categorizing road segments based on
the near-crash event ratio into two groups: low-risk (less than 1%) and rela-
tively high-risk (greater than 1%). Also, we adopt the normalization method
for all numeric features and use the one-hot encoder for categorical variables
in the regression. The low-risk road segments are used as the reference cate-
gory for the regression model, which means that all the estimated coefficients
represent the change in the log odds of a road segment being classified as high-
risk compared to the baseline of being low-risk. Moreover, we only select the
road segments maintained by TxDOT for the regression model because the
attributes of these segments are provided. Some local road segments lack the
necessary attribute information for inclusion in the regression. In particular,
2,811,285 near-crash events from 6,832 road segments across 39 roads are
considered in the regression model, including 4,750 segments in the low-risk
group and 2,082 in the high-risk group.

After filtering out the covariant and insignificant independent variables,
Table 2 presents the overall confidence level of the regression model, along
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with the coefficients for each independent variable. The regression model is
highly statistically significant overall based on the Chi−square and P -value
indicators. Although the Pseudo R2 is 0.1217, indicating that the model
explains a modest portion of the variance in near-crash risk, the statisti-
cally significant coefficients suggest that certain road segments and traffic
attributes still have a meaningful impact on the likelihood of a road segment
being classified as high-risk. The possible reason for the low Pseudo R2 is
that near-crash events are heavily influenced by driver behavior and driving
conditions, which are not fully captured by the road and traffic attributes
included in the model.

Table 2: Binary Logistic Regression Results

Variable
Estimated
Coefficienta

t-
Statistic

Riskb

Ratio
Constant -1.1129 (0.039)∗∗ -28.810 -1.189 (-1.037)
No. of Combination Trucks in AADT -0.2095 (0.062)∗∗ -3.392 -0.331 (-0.088)
No. of Single-Unit Trucks in AADT 0.9006 (0.069)∗∗ 12.985 0.765 (1.037)
Median Width of Area Separating Opposing Lanes 0.0892 (0.034)∗∗ 2.651 0.023 (0.155)
No. of Lanes on Roadway for Continuous Travel in One Direction -0.4268 (0.093)∗∗ -4.580 -0.609 (-0.244)
Percent of Single-Unit-Trucks in AADT -0.4085 (0.044)∗∗ -9.381 -0.494 (-0.323)
Roadbed Width -0.9389 (0.097)∗∗ -9.630 -1.130 (-0.748)
Min. Width of Land for Road Traffic 0.2283 (0.036)∗∗ 6.324 0.158 (0.299)
Type of Inside Shoulder Edge: Stabilized-Surfaced with Flex -1.3024 (0.355)∗∗ -3.695 -1.993 (-0.611)
Type of Outside Shoulder Edge: Stabilized-Surfaced with Flex 1.0803 (0.219)∗∗ 4.937 0.651 (1.509)
Log-likelihood at zero: -−3348.9
Log-likelihood at convergence: -2941.4
Chi-square: 815
Pseudo R2: 0.1217
P -value: 0.0000
∗∗ >99% level of significance
a Standard error are in parentheses
b Lower and upper limits at the 95% confidence interval are in parenthese

Nine road and traffic attributes significantly impact the likelihood of in-
creasing or decreasing high-risk near-crash events at the roadway level. In
particular, the number of combination trucks (heavy trucks with tailors) in
the Annual Average Daily Traffic (AADT) and the percentage of single-unit
trucks in AADT are associated with a reduced likelihood of high-risk events.
Additionally, the number of lanes in one direction, the width of the roadbed,
and the presence of an inside shoulder edge with a stabilized surface type are
also correlated with a decreased probability of high-risk events. Based on the
results, we find that heavy trucks may not be a primary factor in near-crash
events. This could be because drivers tend to exercise greater caution when
sharing the road with more heavy trucks, which may, in turn, reduce the
likelihood of near-crash incidents. A higher percentage of single-unit trucks
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in AADT suggests a lower proportion of smaller and more maneuverable ve-
hicles(like passenger cars) on the road. Passenger vehicles are more likely to
engage in quick lane changes, sudden stops, or speeding, which can increase
the risk of near-crash events. Therefore, a higher concentration of single-unit
trucks could lead to fewer risky maneuvers and a safer driving environment.
Moreover, the likelihood of near-crash events decreases as the number of lanes
for continuous travel in one direction and the width of roadbeds increases.
This suggests that when there are sufficient lanes, and the road surface is
wide enough, vehicles are less likely to engage in frequent overtaking and
merging, thereby further reducing the probability of near-crash occurrences.

As reflected by their positive coefficients, the remaining four variables
are positively associated with an increased likelihood of high-risk near-crash
events. Specifically, the odds of the high-risk near-crash events are approxi-
mately 2.46 (exp(0.9066)) times higher for each unit increase in the number
of single-unit trucks in AADT. Single-unit trucks, such as vans with enclosed
boxes and dump trucks, are more prevalent on urban roads, where frequent
stopping, starting, and lane changes occur, increasing the risk of near-crash
events. The median width of the area separating opposing lanes has a smaller
positive coefficient (0.0892), suggesting that wider medians slightly increase
the likelihood of a near-crash event. However, the odds ratio is close to 1
(exp(0.0892)), indicating a marginal effect. Another factor, the minimum
width of land for road traffic, has a positive coefficient of 0.2283, indicating
that increased land width for road traffic slightly increases the odds of a
near-crash event, with an odds ratio of 1.26(exp(0.2283)). A possible rea-
son for this could be that wider roads may encourage drivers to travel at
higher speeds. Higher speeds reduce reaction time and increase stopping dis-
tances, elevating the likelihood of near-crash events, especially in unexpected
situations (Millard-Ball, 2022).

Another interesting finding is that the impacts of inside and outside road
shoulder types on near-crash events are opposite. For the edge with the sta-
bilized surface using flex, the odds of near-crash events are effectively reduced
on the inside shoulder of the roadway but increase on the outside shoulder
of the roadway. This difference could be attributed to these shoulders’ dis-
tinct functions and associated driver behaviors. Inside shoulders, typically
adjacent to the median, are less frequently used and may offer a safer, more
stable refuge during emergencies, resulting in fewer near-crash events. In
contrast, outside shoulders are more commonly utilized for pulling over, lane
changes, or during emergencies. The stabilized surface on these shoulders
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might inadvertently encourage riskier behaviors, such as driving too close to
the edge or using the shoulder as an additional lane, which could increase the
likelihood of near-crash events. Additionally, the outside shoulder’s greater
exposure to environmental factors such as debris could further elevate this
risk.

5.2. The Spatial distributions of near-crash events across time periods on
workdays and holidays

After understanding the overall landscape of near-crash events in San
Antonio and the factors most strongly associated with them, we grouped
all events by their occurrence time to further analyze variations in their
spatial distributions. Investigating the time-specific distributions of near-
crash events offers deeper insights into the conditions contributing to road
safety risks at specific locations and times. All detected near-crash events
are grouped according to four distinct periods: Morning Peak (6AM-10AM),
Daytime(10AM-4PM), Evening Peak(4PM-8PM), and Nighttime (8PM-6AM)
on both workdays and holidays in November 2021. The spatial distribution of
near-crash events across different periods on workdays and holidays is shown
in Fig.A.8. We adopt the Getis-OrdGi∗ model to analyze the hot and cold
spots of near-crash events in the City of San Antonio with a 1-mile fixed
distance threshold calculating the spatial weights.

As shown in Fig.4, red and blue areas indicate statistically significant
hot spots where near-crash events are concentrated and cold spots with low-
frequent areas, respectively. The deep red and deep blue areas with 99%
confidence demonstrate that there is only a 1% chance that the pattern could
be due to random variation.

Fig.4(A)-(D) show the high-frequent and low-frequent near-crash events
across four periods in workdays, and Fig.4(E)-(F) represent the near-crash
patterns in holidays, respectively. Compared to spatial patterns of the hol-
idays’ morning peak events (in Fig.4(A) and (E)), the high-frequent near-
crash areas in the downtown of San Antonio are more significant in the
workdays’ morning peak. This suggests that the workday morning com-
mute contributes significantly to the concentration of near-crash events in
the downtown area, likely due to higher traffic volumes and more complex
traffic flows as people travel to work. Moreover, the patterns of near-crash
events in workdays’ and holidays’ daytime periods are similar, which indi-
cates that daytime traffic conditions—such as steady flows of commercial
vehicles, local traffic, and routine activities—remain consistent contributors
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Figure 4: Spatial Distribution of Near-Crash Hot and Cold Spots by Road Segments Across
Different Times of Day on Workdays and Holidays
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to near-crash events regardless of workdays or holidays. During the evening
peaks on workdays, the higher frequency of near-crash events in the down-
town area and along major arteries reflects the intensity of the commute
from work to home. However, the holiday evening peak in Fig.4(G) shows a
less intense pattern, possibly because people are engaging in a wider variety
of activities, such as shopping, dining, or visiting recreational areas, which
may be spread out across the city, reducing the concentration of traffic in
specific areas. Furthermore, workday nighttime sees more concentrated hot
spots, particularly in downtown and along key highways, driven by late-night
commuting and other activities. On holiday nights, the overall risk is lower,
with fewer and more dispersed hot spots, reflecting the reduced and more
varied traffic flows typical of holidays.

Associating road-level hot spot areas with traffic analysis zones (TAZs)
provides a more comprehensive understanding of the spatial distribution of
traffic safety issues and their impact across broader regions. By understand-
ing the distribution of near-crash events within TAZs, transportation plan-
ners can make more informed decisions about where to focus safety improve-
ments, infrastructure investments, or policy changes to reduce the likelihood
of crashes. As shown in Fig.5, (A) through (D) show the patterns during
the workday morning peak, daytime, evening peak, and nighttime periods,
respectively, while (E) through (H) depict the corresponding patterns for
holidays. Table 3 demonstrates the corresponding summary of hot and cold
spots of near-crash events by TAZs.

During the workday morning peak, numerous hot spots (131 at 99% con-
fidence) are concentrated in downtown and northern San Antonio, reflecting
the higher risk associated with the morning commute. According to the cen-
sus survey, most middle- and high-income communities are clustered in the
north of San Antonio, where the average number of vehicle ownership per
household is more than 2, implying that there will be high-traffic zones during
the workday morning peak. On holidays, although central areas still exhibit
elevated near-crash risks due to ongoing holiday activities, the number of
hot spots slightly decreases (121 at 99% confidence), reflecting reduced near-
crash risks. Moreover, during the daytime, the spatial patterns of hot spots
change slightly between workdays and holidays, which indicates that while
certain areas remain consistently high-risk due to regular activities, other
areas may experience shifts in risk levels on holidays, likely due to changes
in traffic pattern, such as increased recreational travel or different traffic vol-
umes in commercial and residential zones. During the evening peak hours on
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Figure 5: Spatial Distribution of Near-Crash Hot and Cold Spots by Traffic Analysis Zones
(TAZs) Across Different Times of Day on Workdays and Holidays
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holidays, the number of hot spot areas increases by 20 zones compared to the
events on workdays, possibly due to different traffic patterns, such as recre-
ational travel or evening outings. During the nighttime, near-crash hot spot
areas decrease further throughout the daytime hours, especially on weekends,
due to fewer nighttime trips and a lower number of nighttime events.

Table 3: Hot and Cold Spots of Near-Crash Events across Different Time Periods

Confidence
Workday Holiday

Morning
Peak

Day Time
Evening
Peak

Night Time
Morning
Peak

Day Time
Evening
Peak

Night Time

Cold
Spot

99%
133

(11.53%)
188

(16.31%)
0

(0%)
64

(5.55%)
64

(5.55%)
106

(9.19%)
77

(6.68%)
0

(0%)

95%
135

(11.71%)
123

(10.67%)
26

(2.25%)
101

(8.76%)
117

(10.15%)
131

(11.36%)
133

(11.53%)
59

(5.12%)

90%
84

(7.29%)
67

(5.81%)
69

(5.98%)
104

(9.02%)
92

(7.98%)
100

(8.67%)
89

(7.72%)
91

(7.89)

Not Significant
579

(50.22%)
517

(44.84%)
953

(82.65%)
720

(62.45%)
710

(61.58%)
611

(52.99%)
674

(58.46%)
901

(78.14%)

Hot
Spot

90%
38

(3.30%)
32

(2.78%)
38

(3.30%)
37

(3.21%)
34

(2.95%)
33

(2.86%)
38

(3.30%)
31

(2.69%)

95%
53

(4.60%)
52

(4.51%)
41

(3.56%)
42

(3.64%)
65

(5.64%)
51

(4.42%)
48

(4.16%)
43

(3.73%)

99%
131

(11.36%)
174

(15.09%)
26

(2.25%)
85

(7.37%)
71

(6.16%)
121

(10.49%)
94

(8.15%)
28

(2.43%)

5.3. The Near-crash events on road categories across workdays and holidays

Investigating near-crash events across road categories helps inform broader
transportation policy and urban planning decisions. Different road categories
(e.g., highways, arterial roads, residential streets) may exhibit varying lev-
els of risk depending on the day. It provides data-driven insights that can
be used to improve road designs, manage traffic flow, and enhance overall
road safety according to the unique needs of workdays versus holidays. In
this study, we classify all road segments into ten categories, including Prin-
cipal Arterial (PA), State Highway (SH), Inter-state (IH), State-Loop (SL),
US Highway (US), Farm to Market (FM), State Spur (SS), Country Road
(CR), City Local Street (LS), and Federal Road (RD). Fig.6 shows the overall
near-crash risk in each road category on workdays and holidays.

In general, near-crash risks are higher on workdays across most road cate-
gories, particularly on primary and heavily trafficked roads such as Principal
Arterials, State Highways, and Interstates. The reduction in risk on holidays
across all road categories suggests that lower traffic volumes and varied travel
patterns contribute to safer driving conditions. Compared to other road cat-
egories, Principal Arterials, State Highways, and Interstates are at higher
near-crash risk levels with greater mean and median and wider interquartile
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Figure 6: Overall Near-Crash Risks in Road Categories on Workday and Holiday

ranges. These three types of roads typically carry the bulk of traffic with
various vehicle types and are designed for higher travel speeds. Large traffic
volumes and high travel speeds will reduce the time available for drivers to
react to unexpected events, increasing the chances of near-crash situations.
In addition, Principal Arterials and Interstates often have complex traffic de-
signs, including multiple lanes, frequent merging and diverging points, and
high-density intersections or interchanges. This complexity increases the po-
tential for driver error and near-crash incidents, especially during peak traffic
periods on workdays. In contrast, road categories like City Street and Fed-
eral Roads show significantly lower risks, likely due to lower traffic volumes,
simpler road designs, and generally lower speeds.

We further analyze the distribution of near-crash events of different road
categories across four periods, distinguishing between workdays and holi-
days. Fig.7 reveals that the highest number of near-crash events typically
occurs on Principal Arterials and State Highways across all time periods,
with noticeable increases during the morning and evening peaks. The dif-
ference between workdays and holidays is most pronounced on these road
categories, indicating that commuter traffic significantly contributes to the
frequency of near-crash events. Additionally, the figure highlights the near-
crash event ratios across different severity thresholds, with more severe ratios
(5%-10% and >10%) being more common on PA and SH during peak hours.
The analysis underscores that near-crash risks are higher on major roads and
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are particularly exacerbated during peak commuting times, with workdays
generally observing more incidents than holidays.

Workday Holiday NC Ratio<1% 1%<NC Ratio<5% 5%<NC Ratio<10% NC Ratio>10%
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Figure 7: No. of Near-Crash Events in Road Categories on Different Periods of Workday
and Holiday

6. Discussion and Conclusion

This study leverages connected vehicle data to provide a detailed exam-
ination of near-crash events in the City of San Antonio, offering significant
insights into the spatial-temporal patterns of these incidents. One of the
most important findings of this study is that near-crash events are not ran-
domly distributed but are concentrated in specific urban areas, with certain
road segments exhibiting a much higher frequency of incidents. The study
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detected over 3.3 million near-crash events across 13,231 road segments, with
nearly 76 segments identified as high-risk areas where the near-crash event
ratio exceeds 10%. Specifically, those urban areas with high traffic volumes
and complex road geometries are more prone to near-crash events, such as
downtown and residential areas with high vehicle ownership. Moreover, the
analysis of vehicle speed and distance at the time of near-crash events un-
derscores the significant role that driving behavior, such as following too
closely and traveling at high speeds, plays in contributing to near-crash in-
cidents. Another important finding is that the study demonstrates that the
environmental and structural features of roads, such as the number of lanes,
road width, and the presence of shoulder types, significantly influence the
likelihood of near-crash events. These roads’ environmental and structural
features emphasize the need for a holistic approach to road design and main-
tenance that considers the capacity and efficiency of roads and their safety
implications.

Spatial-temporal variations of near-crash events across different times of
day on both workdays and holidays, uncovering critical insights into how road
safety risks fluctuate based on time and day. The results show that near-crash
events are significantly more concentrated during peak commuting hours on
workdays, particularly in the downtown area and along major thoroughfares,
where traffic volumes are highest. While near-crash risks generally decrease
on holidays, the spatial patterns remain consistent, especially during day-
time hours, indicating that some urban regions maintain elevated risks re-
gardless of the day. However, during the evening and nighttime periods, the
differences between workdays and holidays become more pronounced, with
workdays exhibiting more concentrated hot spots, particularly in central and
high-traffic areas. These findings suggest that targeted interventions during
specific time periods could be highly effective in mitigating near-crash events
and improving overall traffic safety in San Antonio.

In addition, analyzing near-crash events across different road categories
during workdays and holidays offers valuable insights into the patterns of
near-crash event distribution on various roads. Near-crash risks are consis-
tently higher on Principal Arterials, State Highways, and Interstates, par-
ticularly on workdays when traffic volumes and road use intensity are more
significant. These road categories, designed for higher speeds and accom-
modating a diverse mix of vehicles, present increased opportunities for near-
crash events, especially during peak traffic times. Also, while near-crash risks
generally decrease on holidays across most road categories, the reduction is
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not uniform, with some roads still exhibiting significant risks. To sum up,
the combination of high traffic volumes, higher speeds, and complex road
geometries on these major roadways creates environments where near-crash
incidents are more likely to occur.

The findings of this study have significant implications for traffic safety
management, urban planning, and policy-making, particularly in rapidly
growing cities like the City of San Antonio. One of the critical implications is
that this study supplements existing traffic crash records and sheds light on
areas with high traffic collision risks, which can spur proactive interventions
to reduce the risks even before any crashes happen in some specific road seg-
ments. Implementing specific safety measures on these road segments —such
as dynamic speed limits during peak hours, advanced warning systems for
sudden stops, and dedicated lanes for heavy vehicles—could substantially
reduce the likelihood of traffic crash incidents.

Moreover, the study’s temporal analysis highlights the importance of
time-specific traffic interventions. The significant increase in near-crash events
during morning and evening peaks on workdays suggests that traffic safety
strategies should be adaptable to daily fluctuations in traffic conditions. For
instance, increasing law enforcement presence during peak hours, optimiz-
ing traffic signal timings to manage flow more effectively, and encouraging
staggered work hours to reduce congestion could help mitigate the risks asso-
ciated with high traffic volumes. Additionally, the persistence of near-crash
risks on holidays, particularly in areas that typically experience heavy traffic,
suggests that holiday-specific traffic management plans might be necessary.
These plans could include public awareness campaigns to remind drivers of
safe driving practices during holidays when travel patterns may differ from
regular workdays. Enhanced monitoring and temporary traffic control mea-
sures in areas known for recreational travel could also help address the unique
challenges of holiday traffic.

At last, the insights gained from this study could inform the development
of new technologies and data-driven tools for traffic management. The use of
connected vehicle data in this study demonstrates the potential for real-time
traffic monitoring systems that can identify and respond to emerging safety
risks as they occur. These systems could be integrated with existing traf-
fic management infrastructure to provide real-time alerts to drivers, adjust
traffic signals dynamically, or even deploy emergency response teams more
effectively during a near-crash or actual crash.

While this study provides valuable insights into the spatial-temporal pat-
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terns of near-crash events, several limitations should be acknowledged. First,
the study relies on connected vehicle data from a specific period (November
2021), which may not fully capture seasonal variations or long-term trends in
road safety risks. Another limitation is the potential under-representation of
certain types of near-crash events, particularly those involving non-connected
vehicles or occurring in areas with lower data coverage. In the future, we
will address these limitations by collecting more connected vehicle data over
a more extended period to explore the long-term trends in road safety risks
and integrating additional data sources, such as crash reports or data from
other connected vehicle platforms, to provide a more comprehensive analysis
of road safety risks.
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Lu, Q., Tettamanti, T., Hörcher, D., Varga, I., 2020. The impact of au-
tonomous vehicles on urban traffic network capacity: an experimental anal-
ysis by microscopic traffic simulation. Transportation Letters 12, 540–549.

Maneewongvatana, S., Mount, D.M., 1999. Analysis of approximate nearest
neighbor searching with clustered point sets. arXiv preprint cs/9901013 .

Manepalli, U., Bham, G.H., Kandada, S., 2011. Evaluation of hotspots iden-
tification using kernel density estimation (k) and getis-ord (gi*) on i-630,
in: 3rd International Conference on Road Safety and Simulation, National
Academy of Sciences Indianapolis Indiana, United States. pp. 14–16.

Mannering, F., Bhat, C.R., Shankar, V., Abdel-Aty, M., 2020. Big data,
traditional data and the tradeoffs between prediction and causality in
highway-safety analysis. Analytic methods in accident research 25, 100113.

31



Miaou, S.P., Lum, H., 1993. Modeling vehicle accidents and highway geo-
metric design relationships. Accident Analysis & Prevention 25, 689–709.

Millard-Ball, A., 2022. The width and value of residential streets. Journal of
the American Planning Association 88, 30–43.

Nasr Esfahani, H., Arvin, R., Song, Z., Sze, N., 2021. Prevalence of cell
phone use while driving and its impact on driving performance, focusing
on near-crash risk: A survey study in tehran. Journal of Transportation
Safety & Security 13, 957–977.

Nazir, F., Ali, Y., Sharma, A., Zheng, Z., Haque, M.M., 2023. Car-following
crash risk analysis in a connected environment: a bayesian non-stationary
generalised extreme value model. Analytic methods in accident research
39, 100278.

Ord, J.K., Getis, A., 1995. Local spatial autocorrelation statistics: distribu-
tional issues and an application. Geographical analysis 27, 286–306.

Organization, W.H., 2023. Pedestrian safety: a road safety manual for
decision-makers and practitioners. World Health Organization.

Papadoulis, A., Quddus, M., Imprialou, M., 2019. Evaluating the safety
impact of connected and autonomous vehicles on motorways. Accident
Analysis & Prevention 124, 12–22.

Park, B.J., Lord, D., 2009. Application of finite mixture models for vehicle
crash data analysis. Accident Analysis & Prevention 41, 683–691.

Parker Jr, M., Zegeer, C.V., 1989. Traffic conflict techniques for safety and
operations: Observers manual. Technical Report. United States. Federal
Highway Administration.

Perez, M.A., Sudweeks, J.D., Sears, E., Antin, J., Lee, S., Hankey, J.M.,
Dingus, T.A., 2017. Performance of basic kinematic thresholds in the
identification of crash and near-crash events within naturalistic driving
data. Accident Analysis & Prevention 103, 10–19.

Perkins, S.R., 1968. Traffic conflict characteristics-accident potential at in-
tersections. Highway Research Record 225, 35–43.

32



Reagan, I.J., McClafferty, J.A., Berlin, S.P., Hankey, J.M., 2013. Using
naturalistic driving data to identify variables associated with infrequent,
occasional, and consistent seat belt use. Accident Analysis & Prevention
50, 600–607.

Sarkar, S., Tay, R., Hunt, J.D., 2011. Logistic regression model of risk of
fatality in vehicle–pedestrian crashes on national highways in bangladesh.
Transportation research record 2264, 128–137.

Shilpa, R., Bhavathrathan, B., 2024. Incorporating inconsistency patterns on
road networks into crash modeling. Analytic Methods in Accident Research
, 100340.

Shinar, D., 2017. Traffic safety and human behavior. Emerald Publishing
Limited.

Steele, M.T., Ma, O.J., Watson, W.A., Thomas Jr, H.A., Muelleman, R.L.,
1999. The occupational risk of motor vehicle collisions for emergency
medicine residents. Academic emergency medicine 6, 1050–1053.

Sun, J., Yang, Y., Li, K., 2016. Integrated coupling of road traffic and net-
work simulation for realistic emulation of connected vehicle applications.
Simulation 92, 447–457.

Suriyawongpaisal, P., Kanchanasut, S., 2003. Road traffic injuries in thai-
land: trends, selected underlying determinants and status of intervention.
Injury control and safety promotion 10, 95–104.

Sze, N.N., Wong, S., Lee, C., 2014. The likelihood of achieving quantified
road safety targets: A binary logistic regression model for possible factors.
Accident Analysis & Prevention 73, 242–251.

Talebpour, A., Mahmassani, H.S., Mete, F., Hamdar, S.H., 2014. Near-crash
identification in a connected vehicle environment. Transportation Research
Record 2424, 20–28.

Tobler, W.R., 1970. A computer movie simulating urban growth in the
detroit region. Economic geography 46, 234–240.

Virdi, N., Grzybowska, H., Waller, S.T., Dixit, V., 2019. A safety assessment
of mixed fleets with connected and autonomous vehicles using the surrogate
safety assessment module. Accident Analysis & Prevention 131, 95–111.

33



Wang, J., Zheng, Y., Li, X., Yu, C., Kodaka, K., Li, K., 2015. Driving risk
assessment using near-crash database through data mining of tree-based
model. Accident Analysis & Prevention 84, 54–64.

Williams, E., 2008. Aviation formulary v1.47. https://edwilliams.org/

avform147.htm. Accessed: 2024-08-19.

World Health Organization, 2023. Global Status Report on Road Safety
2023. World Health Organization, Geneva, Switzerland. URL: https:
//www.who.int/publications/i/item/9789240086517.

Xie, K., Yang, D., Ozbay, K., Yang, H., 2019. Use of real-world connected
vehicle data in identifying high-risk locations based on a new surrogate
safety measure. Accident Analysis & Prevention 125, 311–319.

Xing, L., He, J., Abdel-Aty, M., Cai, Q., Li, Y., Zheng, O., 2019. Examining
traffic conflicts of up stream toll plaza area using vehicles’ trajectory data.
Accident Analysis & Prevention 125, 174–187.

Ye, X., Li, S., Das, S., Du, J., 2024. Enhancing routes selection with real-
time weather data integration in spatial decision support systems. Spatial
Information Research 32, 373–381.

Zhang, S., Abdel-Aty, M., 2022. Real-time crash potential prediction on free-
ways using connected vehicle data. Analytic methods in accident research
36, 100239.

Zheng, L., Sayed, T., Mannering, F., 2021. Modeling traffic conflicts for use
in road safety analysis: A review of analytic methods and future directions.
Analytic methods in accident research 29, 100142.

Zhu, C., Dadashova, B., Lee, C., Ye, X., Brown, C.T., 2024. Equity in
non-motorist safety: Exploring two pathways in houston. Transportation
Research Part D: Transport and Environment 132, 104239.

34

https://edwilliams.org/avform147.htm
https://edwilliams.org/avform147.htm
https://www.who.int/publications/i/item/9789240086517
https://www.who.int/publications/i/item/9789240086517


Appendix A. Appendix

Table A.4: Traffic and Environment Characteristics for Logic Regression Model
Variable Mean Median Std. Min Max Description

AADT CURRENT 67969.81 42740.00 65473.35 54.00 262595.00 Current annual average daily traffic
AADT TRAFFIC TRUCKS 4743.14 1949.00 5985.56 0.00 28646.00 Trucks in AADT

TRUCK AADT PCT 6.26 4.40 5.04 0.00 32.20 Percentage of trucks in AADT
PERCENT SINGLE TRUCK AADT 3.27 2.80 1.64 0.00 17.10 Percentage of single-unit trucks in AADT
PERCENT COMBO TRUCK AADT 2.98 1.50 3.85 0.00 24.50 Percentage of combination-unit trucks in AADT

AADT TRAFFIC SINGLE UNIT TRUCKS 2219.00 1277.00 2185.49 0.00 8998.00 No. of single-unit trucks in AADT
AADT COMBINATION UNIT TRUCKS 2524.14 769.00 4050.51 0.00 20223.00 No. of combination-unit trucks in AADT

HPMS MEDIAN WIDTH 20.25 11.00 23.03 0.00 96.00 Median Width of Area Separating Opposing Lanes
NUMBER OF THROUGH LANES 3.17 2.00 1.80 1.00 12.00 No. of Lanes on Roadway for Continuous Travel in One Direction

ROADBED WIDTH 52.75 42.00 30.87 0.00 236.00 Roadbed Width
RIGHT OF WAY WIDTH MINIMUM 263.13 300.00 101.63 0.00 500.00 Min. Width of Land for Road Traffic

SHOULDER TYPE INSIDE - - - - -

0=None (unpaved)
1=Bituminous Surface (paved)
2=Concrete Surface (paved)

3=Stabilized-Surfaced with Flex (unpaved)
4=Combination-Surface / Stabilized (unpaved)

5=Earth-with or without turf (unpaved)
6=Brick

99=Unknown

SHOULDER TYPE OUTSIDE - - - - -

0=None (unpaved)
1=Bituminous Surface (paved)
2=Concrete Surface (paved)

3=Stabilized-Surfaced with Flex (unpaved)
4=Combination-Surface / Stabilized (unpaved)

5=Earth-with or without turf (unpaved)
6=Brick

99=Unknown

SURFACE TYPE - - - - -

1=Continuously Reinforced Concrete
2=Jointed Reinforced Concrete

3=Jointed Plain Concrete
4=Thick Asphaltic Concrete, over 5.5 inches

5=Medium Asphaltic Concrete, 2.5 - 5.5 inches
6=Thin Asphaltic Concrete, under 2.5 inches
7=Composite (Asphalt Surfaced Concrete)

8=Widened Composite Pavement
9=Overlaid and Widened Asphaltic Concrete Pavement

10=Surface Treatment Pavement
11=Brick
12=Bladed
13=Gravel

99=Unknown

PEAK PARKING - - - - -
1=Parking allowed on one side
2=Parking allowed on both sides

3=No parking allowed or none available

WIDENING OBSTACLE - - - - -

0=No obstacles
1=Dense development

2=Major transportation facilities
3=Other public facilities
4=Terrain restrictions

5=Historic and archaeological sites
6=Environmentally sensitive areas

7=Parkland
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Figure A.8: Spatial Distribution of Near-Crash Events across Different Periods on Work-
days and Holidays
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